I have these expressions:

vh[m_, γ_] := Sqrt[((γ^2 – 4 EllipticK[m]^2) (γ^2 – 4 m EllipticK[m]^2))/(-γ^2 EllipticK[m]^2 + 4 (1 + m) EllipticK[m]^4)](*Sqrt[ε0/ n]*)(EllipticK[m] – EllipticPi[1 + m – γ^2/(4 EllipticK[m]^2), m]) hR[m_, γ_] := 2*Sinh[vh[m, γ]/2] Areac[m_, γ_] := ( 4 EllipticK[m] (-EllipticE[m] + EllipticK[m]))/ Sqrt[γ^2 – 4 (1 + m) EllipticK[m]^2] FAc[γ_] := α /. FindRoot[-4 (1 + Tan[α]) + γ^2/ EllipticK[Tan[α]]^2 == 0, , PrecisionGoal -> 50, WorkingPrecision -> 30] // Quiet // Chop(*divergence of the area*) FBc[γ_] := α /. FindRoot[(2/γ EllipticK[Tan[α]] == 1), , PrecisionGoal -> 50, WorkingPrecision -> 30] // Quiet // Chop(*x[Equal]1*)

When I evaluate

γ = 0.172969;

I get

so I expect that value in the plot. But when I make a plot with:

ParametricPlot[, , PlotRange -> {, {-10, -1}}, AxesOrigin -> , AspectRatio -> 0.7, PlotStyle -> Red]

What happened? Why does ParametricPlot does not show the point I expect?